80.4k views
3 votes
Solve the initial value problem y'=2 cos 2x/(3+2y),y(0)=−1 and determine where the solution attains its maximum value.

1 Answer

1 vote

Answer:


y=(-3\pm√(4sin2x+1))/(2)


x={\pi}{4}

Explanation:

We are given that


y'=(2cos2x)/(3+2y)

y(0)=-1


(dy)/(dx)=(2cos2x)/(3+2y)


(3+2y)dy=2cos2x dx

Taking integration on both sides then we get


\int (3+2y)dy=2\int cos 2xdx


3y+y^2=sin2x+C

Using formula


\int x^n=(x^(n+1))/(n+1)+C


\int cosx dx=sinx

Substitute x=0 and y=-1


-3+1=sin0+C


-2=C


sin0=0

Substitute the value of C


y^2+3y=sin2x-2


y^2+3y-sin 2x+2=0


y=(-3\pm√((3)^2-4(1)(-sin2x+2)))/(2)

By using quadratic formula


x=(-b\pm√(b^2-4ac))/(2a)


y=(-3\pm√(9+4sin2x-8))/(2)=(-3\pm√(4sin2x+1))/(2)

Hence, the solution
y=(-3\pm√(4sin2x+1))/(2)

When the solution is maximum then y'=0


(2cos2x)/(3+2y)=0


2cos2x=0


cos2x=0


cos2x=cos(\pi)/(2)


cos(\pi)/(2)=0


2x=(\pi)/(2)


x=(\pi)/(4)

User Fatimah
by
4.1k points