(4) 64 tiles, (5)
, (6)
![N^(2)=S^(4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/usb5msj6mf37p28co3uow35o6rctiuahuq.png)
Explanation:
Given data: Side length of square tile = 1 ft
(4) Side length of square pool = 8 ft
![\text {Number of tiles} =\frac{\text { Area of square pool }}{\text { area of square tile }}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/h1wd287jd7amvkcr1e0jz6imhxlv4f1eyk.png)
![=(8 * 8)/(1 * 1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rnctknu88m90w9uppfd3s7faqjt4udyw99.png)
= 64
Hence 64 tiles needed for the border.
(5) Suppose number of square tiles be N and side of square tub is s ft.
So, N =
![(s * s)/(1 * 1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/v4xz30u3intq0xyfb3q59sxp1yc7hxafns.png)
![\Rightarrow N=s^(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/701pa522zlv6yzaf3o4qte8mrabg0a379m.png)
So, the expression is
.
(6) The equivalent expression is
.