57.2k views
3 votes
Given: LP=NP
ML=MN
Prove: LQ=QN

Given: LP=NP ML=MN Prove: LQ=QN-example-1
User Ope
by
4.2k points

1 Answer

6 votes

Answer:

The Proof is below.

Explanation:

Given:


\overline {LP} \cong \overline{NP}


\overline {ML} \cong \overline{MN}

To Prove:


\overline {LQ} \cong \overline{QN}

Proof:

In ΔLPM and ΔNPM


\overline {LP} \cong \overline{NP} ……….{Given}


\overline {ML} \cong \overline{MN} ……….{Given}


\overline {LP} \cong \overline{NP} ……….{Reflexive Property}

ΔLPM ≅ ΔNPM ….{ By Side-Side-Side congruence test}

∴ ∠LMP ≅ ∠NMP ...{Corresponding parts of congruent triangles (c.p.c.t).}.....( 1 )

Now In ΔLMQ and ΔNMQ


\overline {ML} \cong \overline{MN} ……….{Given}

∠LMQ ≅ ∠NMQ ..........{From 1 above}


\overline {MQ} \cong \overline{MQ} ……….{Reflexive Property}

ΔLMQ ≅ ΔNMQ ....{ By Side-Angle-Side Congruence test}


\overline {LQ} \cong \overline{QN} ...{Corresponding parts of congruent triangles (c.p.c.t).}.....Proved

User Aaafly
by
4.4k points