Answer:
∠B = 28°,
![a = 69.61\ and\ c = 56.87](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7x0r3qwf8jbor1mymes44tlxtkz195198a.png)
Explanation:
Given:
A triangle ABC with the following data:
∠A = 98°, ∠C = 54°, b = 33
Now, for a triangle, the sum of all interior angles is equal to 180°. So,
∠A + ∠B + ∠C = 180°
⇒ 98° + ∠B + 54° = 180°
⇒ ∠B + 152° = 180°
⇒ ∠B = 180° -152°
⇒ ∠B = 28°
Now, using the sine rule for a triangle, we can find the remaining sides of the triangle. The sine rule is:
![(\sin A)/(a)=(\sin B)/(b)=(\sin C)/(c)\\\\(\sin 98\°)/(a)=(\sin 28\°)/(33)\\\\a=(33* \sin 98\°)/(\sin 28\°)\\\\a=69.61](https://img.qammunity.org/2021/formulas/mathematics/middle-school/z04ezo0kib95ah9e0rgv5opbf0d8lp6ms8.png)
Now, we consider the second pair of fraction.
![(\sin B)/(b)=(\sin C)/(c)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/oq3wv0olc370c5r4b7z5pzqwl0hvqzlxge.png)
![(\sin 28\°)/(33)=(\sin 54\°)/(c)\\\\c=(33*\sin 54\°)/(\sin 28\°)\\\\c=56.87](https://img.qammunity.org/2021/formulas/mathematics/middle-school/fw1myr4jhfhi22j7ij0ckiwho5rrdjx841.png)
Therefore, the missing data are:
∠B = 28°, a = 69.61 and c = 56.87