18.2k views
0 votes
Write an equation of the perpendicular bisector of the segment with endpoints a(-2 0) and r(6 12)

User Dvarelas
by
5.2k points

1 Answer

3 votes

Answer:

y = - 2/3 x + 7 1/3

Explanation:

coordinate of midpoint of ar (difference of x/2, difference of y/2)

= -2 +(6 - (-2))/2 , 0 + (12 - 0) / 2) = (2 , 6)

slope of ar = (12 - 0) / (6 - (-2)) = 12 / 8 = 3/2

slope of perpendicular line = - 2/3

For line pass (2, 6) y = mx + b m= - 2/3

b = y - mx = 6 - (- 2/3) x 2 = 22/3

equation: y = - 2/3 x + 7 1/3

check: (2 , 6) y = (-2/3) x 2 + 7 1/3 = - 4/3 + 22/3 = 18/3 = 6

Write an equation of the perpendicular bisector of the segment with endpoints a(-2 0) and-example-1
User Ssell
by
5.2k points