203,682 views
18 votes
18 votes
HELP ME ASAP PLEASE ITS THE SAME CONCEPT

HELP ME ASAP PLEASE ITS THE SAME CONCEPT-example-1
User Jon Strayer
by
2.8k points

1 Answer

21 votes
21 votes

Answer :

  • m∠Q = 133°

Explanation :

We know that,

  • Sum of all angles of a triangle = 180°.

Therefore,


{ \longrightarrow \sf \qquad \: m \angle \: P +m \angle Q + m\angle R = 180 {}^( \circ) }


{ \longrightarrow \sf \qquad \: {(x + 13)}^( \circ) +{(10x + 13)}^( \circ) + {(2x - 2)}^( \circ) = 180 {}^( \circ) }

Adding like terms we get :


{ \longrightarrow \sf \qquad \: {(x + 10x + 2x)} +(13^( \circ) + 13^( \circ) - 2^( \circ) ) = 180 {}^( \circ) }


{ \longrightarrow \sf \qquad \: 13x +24^( \circ) = 180 {}^( \circ) }


{ \longrightarrow \sf \qquad \: 13x = 180 {}^( \circ) - 24^( \circ) }


{ \longrightarrow \sf \qquad \: 13x = 156 {}^( \circ) }


{ \longrightarrow \sf \qquad \: x = \frac{156 {}^( \circ) }{13} }


{ \longrightarrow \qquad \: { \pmb{ x = 12 {}^( \circ) } }}

Therefore,

  • The value of x = 12°

Now, Substituting the value of x in m∠Q :


{ \longrightarrow \qquad \: { \sf{ m \angle Q =( 10x + 13) {}^( \circ) } }}


{ \longrightarrow \qquad \: { \sf{ m \angle Q =10(12) {}^( \circ) + 13{}^( \circ) } }}


{ \longrightarrow \qquad \: { \sf{ m \angle Q =120 {}^( \circ) + 13{}^( \circ) } }}


{ \longrightarrow \qquad \: { \pmb{ m \angle Q =133 {}^( \circ) } }}

User Antoine Jaussoin
by
2.7k points