Answer:
The equine spermatozoa treated without cryoprotectants scored the highest motility because cryodamage due to stress in differences in the relative permeability of cryoprotectants, such as glycerol and water, seems to be an important factor in achieving it. Maintained at room temperature equine spermatozoa had a limited osmotic tolerance to anisosmotic conditions.
Step-by-step explanation:
Equine spermatozoa had a limited osmotic tolerance to anisosmotic conditions. Although the addition of increasing concentrations of glycerol decreased the motility and viability of equine spermatozoa, the rapid removal of glycerol by dilution in isosmotic media resulted in an even greater decline in motility and viability compared with spermatozoa maintained under anisosmotic conditions.
So, the addition and rapid removal of 1.0 M glycerol, ethylene glycol, dimethylsulfoxide, or propylene glycol resulted in a significant decline in sperm motility and viability. Among these cryoprotectants, ethylene glycol had the least detrimental effect on either viability or motility of spermatozoa following the rapid addition and removal of these cryoprotectants.
Of the 4 cryoprotectants evaluated in equine spermatozoa, the addition and removal of glycerol resulted in a more marked osmotic stress as indicated by alterations in motility, viability, and acrosomal integrity. These data suggest that alternative cryoprotectants should be considered for cryopreservation of equine spermatozoa in order to reduce osmotic stress associated with the addition of these agents during semen freezing.