Answer:
Since, the six main trigonometric functions are:
- Sine (sin)
- Cosine (cos)
- Tangent (tan)
- Secant (sec)
- Cosecant (csc)
- Cotangent (cot)
If we have the exact value of any one trigonometric function for a degree then we can find the other function for the same degree as follow.
sin 300° = sin (-60 + 360)° = sin (-60) = - sin 60 =
![-(√(3))/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/33hirfcev9sh99o9jhqkw5agnhbs47kdc0.png)
cos 300° = cos (-60 + 360)° = cos (-60) = cos 60 =
![(1)/(2)](https://img.qammunity.org/2021/formulas/physics/middle-school/ukxexrkoplrwscaxd96qbbkphc5fo6w2ur.png)
tan 300° =
![(\sin 300^(\circ))/(\cos 300^(\circ))=(-(√(3))/(2))/((1)/(2))=-√(3)](https://img.qammunity.org/2021/formulas/mathematics/college/pieq8vcgxm85f3lbu7ix0u5nzfxxixl3st.png)
cot 300° =
![(1)/(\tan 300^(\circ))=(1)/(-√(3))=-(1)/(√(3))=-(√(3))/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/iqq4b5rimd9ar61mlmd6yvtq0obekbsebl.png)
sec 300° =
![(1)/(\cos 300^(\circ))=(1)/((1)/(2))=2](https://img.qammunity.org/2021/formulas/mathematics/college/vmxj9tf2wgwqs82xrs04eufc0zd1rjw9v1.png)
csc 300° =
![(1)/(\sin 300^(\circ))=(1)/(-(√(3))/(2))=-(2)/(√(3))=-(2√(3))/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/81oojba7i5az5085jz2h8dhlubgj4zjum4.png)
Note : sin (-x) = -sin x and cos (-x) = cos x