77.2k views
3 votes
Find exact values of the six trigonometric functions for

theangle 300 degrees (rationalizing the denominator).

User ArcX
by
3.7k points

1 Answer

3 votes

Answer:

Since, the six main trigonometric functions are:

  • Sine (sin)
  • Cosine (cos)
  • Tangent (tan)
  • Secant (sec)
  • Cosecant (csc)
  • Cotangent (cot)

If we have the exact value of any one trigonometric function for a degree then we can find the other function for the same degree as follow.

sin 300° = sin (-60 + 360)° = sin (-60) = - sin 60 =
-(√(3))/(2)

cos 300° = cos (-60 + 360)° = cos (-60) = cos 60 =
(1)/(2)

tan 300° =
(\sin 300^(\circ))/(\cos 300^(\circ))=(-(√(3))/(2))/((1)/(2))=-√(3)

cot 300° =
(1)/(\tan 300^(\circ))=(1)/(-√(3))=-(1)/(√(3))=-(√(3))/(3)

sec 300° =
(1)/(\cos 300^(\circ))=(1)/((1)/(2))=2

csc 300° =
(1)/(\sin 300^(\circ))=(1)/(-(√(3))/(2))=-(2)/(√(3))=-(2√(3))/(3)

Note : sin (-x) = -sin x and cos (-x) = cos x

User SPoage
by
3.8k points