Answer:
b. 0.0222
Explanation:
The Central Limit Theorem estabilishes that, for a random variable X, with mean
and standard deviation
, a large sample size can be approximated to a normal distribution with mean
and standard deviation
.
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
What is the probability that the mean weight for a sample of 40 trout exceeds 405.5 grams?
This is 1 subtracted by the pvalue of Z when X = 405.5. So
has a pvalue of 0.9778.
So the answer is 1-0.9778 = 0.022