234k views
3 votes
Write the integral that gives the length of the curve y = f (x) = ∫0 to 4.5x sin t dt on the interval ​[0,π​].

User Robert N
by
3.2k points

1 Answer

5 votes

Answer:

Arc length
=\int_0^(\pi) √(1+[(4.5sin(4.5x))]^2)\ dx

Arc length
=9.75053

Explanation:

The arc length of the curve is given by
\int_a^b √(1+[f'(x)]^2)\ dx

Here,
f(x)=\int_0^(4.5x)sin(t) \ dt interval
[0, \pi]

Now,
f'(x)=\frac{\mathrm{d} }{\mathrm{d} x} \int_0^(4.5x)sin(t) \ dt


f'(x)=\frac{\mathrm{d} }{\mathrm{d} x}\left ( [-cos(t)]_0^(4.5x) \right )


f'(x)=\frac{\mathrm{d} }{\mathrm{d} x}\left ( -cos(4.5x)+1 \right )


f'(x)=4.5sin(4.5x)

Now, the arc length is
\int_0^(\pi) √(1+[f'(x)]^2)\ dx


\int_0^(\pi) √(1+[(4.5sin(4.5x))]^2)\ dx

After solving, Arc length
=9.75053

User Lasana
by
3.3k points