Answer:
The Range is {3, 6}.
Explanation:
The correct question is
Find the range of the function below if the domain is {-1,0,2} f(x)=x^2 -2x+3
we know that
The domain represents all possible values of x.
The range represents all possible values of f(x)
Substitute all of the possible x-values (domain) into the formula to find all possible f(x) values (the range).
For x=-1
![f(-1)= (-1)^(2) - 2(-1) + 3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/df9c39nbohyhl9l58bejxnqcvtsqofh6xw.png)
![f(-1)=1+2+ 3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2flswr8dnzphv5ipxuphpyrjzz6ui1o1cl.png)
![f(-1)=6](https://img.qammunity.org/2021/formulas/mathematics/middle-school/91pw1zq94cmtby43b59zdwbmrkr8zsgu8g.png)
For x=0
![f(0)= (0)^(2) - 2(0) + 3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ipl5m8zwqd026j2iha9fttktmi8p5e7zsd.png)
![f(0)=0-0+ 3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zkgqrylouen1ouoqalahqhzbkm0xnlz2kz.png)
![f(0)=3](https://img.qammunity.org/2021/formulas/mathematics/high-school/js4i6xqagpjam1fcaoxyqsmniglbrl6gnq.png)
For x=2
![f(2)= (2)^(2) - 2(2) + 3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8coohxpaeys8lmbcs9eqvi3ww84nmi9zfs.png)
![f(2)=4-4+ 3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9w10p6e48em9blsmuypkz8r81dss79gzby.png)
![f(2)=3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/55336vi7gy8ie4jxeut89fupighge0tju0.png)
therefore
The Range is {3, 6}.