Answer:
The sum of arithmetic series is 2077.
Step-by-step explanation:
Solution :
Here we have provided that :
We need to find :
- »» The sum of arithmetic series.
Here's the required formula to find the sum of arithmetic series :
![\longrightarrow{\pmb{\sf S = (n)/(2) \Big(a_1 + a_n \Big)}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/f45z1sd3io44avtruuiu5pyphyq0756mrk.png)
Substituting all the given values in the formula to find the sum of arithmetic series :
![{\longrightarrow{\sf S = (n)/(2) \Big(a_1 + a_n \Big)}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/43la973ndgfdi9r5q0ioj3b7ztjezozvb8.png)
![{\longrightarrow{\sf S = (31)/(2) \Big(7 + 127 \Big)}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/mxu7mmv93oy9szarbhxjd7v1hp7fa1pu1m.png)
![{\longrightarrow{\sf S = (31)/(2) \Big(134 \Big)}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/ldokh5ol4t90ba1rxv3j5usbw4l7yw76cd.png)
![{\longrightarrow{\sf S = (31)/(2) * 134 }}](https://img.qammunity.org/2022/formulas/mathematics/high-school/470vubuv0xl0l1w27gm0cvaoppjs98d14o.png)
![{\longrightarrow{\sf S = \frac{31}{\cancel{2}} * \cancel{134 }}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/g07h2ys6nmokk0ssjb3eew9yjhtcfg51k2.png)
![{\longrightarrow{\sf S = 31 * 67}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/f2ghk7ptgp82d282yc9bmmrh53q42qayec.png)
![{\longrightarrow{\sf S = 2077}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/vl0enuomh8lc5f5ju65crpzqwj23ivy929.png)
![\star \: {\underline{\boxed{\sf{\red{S = 2077}}}}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/9e67ociqlg2lp64hv2qpqj4sktal2sj1vu.png)
Hence, the sum of arithmetic series is 2077.
![\rule{300}{1.5}](https://img.qammunity.org/2022/formulas/computers-and-technology/college/d65774twaz0valxki6xchlydj44bqzuhee.png)