94,843 views
11 votes
11 votes
Tan^2(x) × cos^2(x) = 1 - cos^2(x)

User Naveen Niraula
by
2.9k points

2 Answers

14 votes
14 votes

Answer:

true

Explanation:

User Fannie
by
3.0k points
25 votes
25 votes

Answer: True

Explanation:


\tan ^2\left(x\right)\cos ^2\left(x\right)=1-\cos ^2\left(x\right)


\mathrm{Manipulating\:left\:side}


\tan ^2\left(x\right)\cos ^2\left(x\right)


\mathrm{Use \ the \ basic \ trigonometric \ identity \ \:tan\left(x\right)=(sin\left(x\right))/(cos\left(x\right))}


=\cos ^2\left(x\right)\left((\sin \left(x\right))/(\cos \left(x\right))\right)^2


=(\sin ^2\left(x\right))/(\cos ^2\left(x\right))\cos ^2\left(x\right)


=(\sin ^2\left(x\right)\cos ^2\left(x\right))/(\cos ^2\left(x\right))


\mathrm{Cancel\:the\:common\:factor:}\:\cos ^2\left(x\right)


=\sin ^2\left(x\right)


\mathrm{Use \ the \ Pythagorean \ identity \ \cos ^2\left(x\right)-\sin ^2\left(x\right)=1 \rightarrow \sin ^2\left(x\right)=1-\cos ^2\left(x\right)}}


=1-\cos ^2\left(x\right)


1-\cos ^2\left(x\right) =1-\cos ^2\left(x\right)

Left side = right side

Therefore, the identity is true

User Aaron Clark
by
3.2k points