395,003 views
11 votes
11 votes
Select the correct answer.
Solve the equation by completing the square.
0=x^2-14x+46

User JacekK
by
2.3k points

1 Answer

12 votes
12 votes

Answer:


x=7+√(3),\:x=7-√(3)

Explanation:


\mathrm{Switch\:sides}


x^2-14x+46=0


\mathrm{Solve\;wit\;Quadratic\;formula}


x_(1,\:2)=(-\left(-14\right)\pm √(\left(-14\right)^2-4\cdot \:1\cdot \:46))/(2\cdot \:1)


√(\left(-14\right)^2-4\cdot \:1\cdot \:46)}{2\cdot \:1}=2√(3)


x_(1,\:2)=(-\left(-14\right)\pm \:2√(3))/(2\cdot \:1)


\mathrm{Separate\:the\:solutions}


x_1=(-\left(-14\right)+2√(3))/(2\cdot \:1),\:x_2=(-\left(-14\right)-2√(3))/(2\cdot \:1)


\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}


x=7+√(3),\:x=7-√(3)

~Lenvy~

User Sergey Shcherbakov
by
2.7k points