Given that y = cos(x) makes up part of the boundary of C, I suspect you mean the given points to be (-π/2, 0) and (π/2, 0).
I also assume the given vector field is
![\vec F(x,y) = \left\langle e^(-x) + y^2, e^(-y) + x^2 \right\rangle](https://img.qammunity.org/2022/formulas/sat/high-school/n8zn20thsm45xs3sqdh9n4wrf22zlfaq8z.png)
Since
has no singularities on C or in its interior, Green's theorem applies:
![\displaystyle \int_C \vec F(x,y) \cdot d\vec r = \iiint_D (\partial(e^(-y)+x^2))/(\partial x) - (\partial(e^(-x)+y^2))/(\partial y) \, dA = 2 \iiint_D (x + y) \, dA](https://img.qammunity.org/2022/formulas/sat/high-school/alyyps4u31f3n9nk6iyl15jf9lr4o8vmr5.png)
where D is the interior of C, the region
![D = \left\{ (x, y) : -\frac\pi2 \le x \le \frac\pi2 \text{ and } 0 \le y \le \cos(x) \right\}](https://img.qammunity.org/2022/formulas/sat/high-school/u8cj8t38esl1ew01ux9z4d7mn35620u8c9.png)
The integral then reduces to
![\displaystyle 2 \iint_D (x + y) \, dA = 2 \int_(-\frac\pi2)^(\frac\pi2) \int_0^(\cos(x)) (x + y) \, dy \, dx](https://img.qammunity.org/2022/formulas/sat/high-school/y69oxysdwiyqz7tgthe8gn26l5hqmoa147.png)
![\displaystyle 2 \iint_D (x + y) \, dA = 2 \int_(-\frac\pi2)^(\frac\pi2) \left( x\cos(x) + \frac12 \cos^2(x) \right) \, dx](https://img.qammunity.org/2022/formulas/sat/high-school/wj3i1a20qocp86iz3z7kjmk79clky4b93v.png)
![\displaystyle 2 \iint_D (x + y) \, dA = 2 \int_(-\frac\pi2)^(\frac\pi2) \left( x\cos(x) + \frac{1 + \cos(2x)}4 \right) \, dx](https://img.qammunity.org/2022/formulas/sat/high-school/rzb940qavkondrn5e4kzbuuct8vmhwnke9.png)
![\displaystyle 2 \iint_D (x + y) \, dA = \frac12 \int_(-\frac\pi2)^(\frac\pi2) \left( 4x\cos(x) + 1 + \cos(2x) \right) \, dx](https://img.qammunity.org/2022/formulas/sat/high-school/syx5mziy88j9uh6pdus7gto9zhnskx7tcf.png)
Since 4x cos(x) is an odd function over the symmetric interval [-π/2, π/2], its contribution to the integral is 0, and the remaining integral is trivial.
![\displaystyle 2 \iint_D (x + y) \, dA = \frac12 \int_(-\frac\pi2)^(\frac\pi2) \left( 1 + \cos(2x) \right) \, dx = \boxed{\frac\pi2}](https://img.qammunity.org/2022/formulas/sat/high-school/3uk2qd3rfsf0en1ylqss4ig53lyka6pos2.png)