Hi there!
Recall the following.
Capacitors in series:
![C_T = (1)/(C_1) + (1)/(C_2) +...+ (1)/(C_n)](https://img.qammunity.org/2023/formulas/physics/college/xkdh59w96ng4wnfvjaynmva38xkzwud8dp.png)
Capacitors in parallel:
![C_T = C_1 + C_2 + ... + C_n](https://img.qammunity.org/2023/formulas/physics/college/bcnumlmufd3zbydlilvw2o0jnyjyxynsoz.png)
Begin by solving for the resulting capacitance of both paths.
Path on the left:
![(1)/(C_T) = (1)/(2C) + (1)/(C) = (3)/(2C)\\C_T = (2C)/(3)](https://img.qammunity.org/2023/formulas/physics/college/iktm84azlwnzgqitaxpcm51ldr676dn0b0.png)
Path on the right:
![(1)/(C_T) = (1)/(C) + (1)/(3C) = (4)/(3C)\\\\C_T = (3C)/(4)](https://img.qammunity.org/2023/formulas/physics/college/ekqhttz2sy2n8j7p32ry9vff4dgc37pxmp.png)
Now, since we ADD capacitors in parallel, we can add the resulting capacitances together:
![C_T = (2C)/(3) + (3C)/(4)](https://img.qammunity.org/2023/formulas/physics/college/sxyccl40lnh6yycsw55e0ptegxe10n78u7.png)
Substitute in 12 F for C and solve.
![C_T = (2(12))/(3) + (3(12))/(4) = (24)/(3) + (36)/(4) = 8 + 9 = \boxed{17F}](https://img.qammunity.org/2023/formulas/physics/college/su0aqsvcx91j7i4hii1u7nanr9oi49xsj0.png)