18.2k views
3 votes
Use the conjugate to divide1 - i / square root of 3 + 4i

1 Answer

5 votes

Answer:

Explanation:

(1 - i) / (sqrt(3 + 4i)

= (1 - i) /
√(3 + 4i)

=> multiply and divide by conjugate of denominator

=
(1 - i) / √(3 + 4i) * √(3 - 4i) / √(4 - 3i)

=
(1 - i)*(√(3 - 4i) ) / (√(3 + 4i) *√(3 - 4i))

=
(1 - i) * (√(3 - 4i) ) / \sqrt{(9 - 16i^(2) )

=
(1 - i) * (√(3 - 4i) ) / \sqrt{(9 - (-16) )

=
(1 - i) * √(3 - 4i) ) / √(25)

=
(1 - i) * √(3 - 4i) / 5

=
\sqrt{(1 - i)^(2) } * √(3 - 4i) / 5

=
√((1 + -1 -2i)*(3 - 4i)) / 5 \\√(-2i * (3 - 4i)) / 5\\√(-6i + 8*-1) /5 \\√(-6i - 8 ) / 5

User Cmonkey
by
4.1k points