199k views
2 votes
If a^x=b^y and a^y=b^x, show that x=y.​

User Haofly
by
4.6k points

1 Answer

0 votes


▪▪▪▪▪▪▪▪▪▪▪▪▪  {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪


\large \boxed{ \mathfrak{Step\:\: By\:\:Step\:\:Explanation}}

Let's solve ~

Using first equation we get,


  • {a}^(x) = {b}^(y)


a = \sqrt[x]{ {b}^(y) }


  • a = {b}^{ (y)/(x) }

now, plug the value of a in other equation ~


  • a {}^(y) = b {}^(x)


  • ( {b}^{ (y)/(x) } ) {}^(y) = {b}^(x)


  • {(b) }^{ (y)/(x) * y} = {b}^(x)


  • {(b)}^{ \frac{ {y}^(2) }{x} } = {b}^(x)


  • \frac{ {y}^(2) }{x} = x


  • {y}^(2) = {x}^{} * x


  • {y}^(2) = {x}^(2)


  • y = x

I hope it helps ~

User Ibrahim Khan
by
5.0k points