209k views
4 votes
Solve the following


\sf{\int \: \frac{ {x}^{ (1)/(2) } }{1 + {x}^{ (3)/(4) } } }


User Mohonish
by
8.0k points

1 Answer

0 votes

Explanation:


\large\underline{\sf{Solution-}}

Given integral is


\displaystyle\int\rm \frac{{\bigg( x\bigg) }^{(1)/(2) }}{1 + {\bigg( x \bigg) }^{(3)/(4) }} \: dx

To evaluate this integral, we have to first remove the fractional exponents from the integrand.

So, we substitute


\sf{x = {y}^(4) \: \: \: \: \: \: \: \: \: \: \bigg[\rm\implies \:y = {\bigg(x\bigg) }^{(1)/(4) }\bigg] }

So, on substituting these values, above integral can be rewritten as


\rm \: = \longmapsto\: \displaystyle\int\rm \frac{ {y}^(2) }{1 + {y}^(3) } * {4y}^(3) \:


\rm \: \longmapsto= \: 4\displaystyle\int\rm \frac{ {y}^(3) * {y}^(2) }{1 + {y}^(3) } \:

To evaluate this integral further, we substitute


\rm \: \longmapsto \: 1 + {y}^(3) = t1+y3=t


\rm \:\longmapsto {y}^(3) = t - 1y3=t−1


\sf \: \longmapsto{3y}^(2) \: dy \: = \: dt3y2


(dt)/(3)

So, on substituting these values in above integral, we get


\rm \: = \: 4\displaystyle\int\rm ((t - 1))/(t) \: * (1)/(3) \:


\rm \: = \: (4)/(3) \displaystyle\int\rm ((t - 1))/(t) \:


\rm \: = \: (4)/(3) \displaystyle\int\rm \bigg[1 - (1)/(t) \bigg] \:


\rm \: = \: (4)/(3) \bigg(t \: - \: log |t|\bigg) + c=34(


\rm \: = \: (4)/(3) \bigg( {y}^(3) + 1 \: - \: log | {y}^(3) + 1|\bigg)


\rm \: = \: (4)/(3) \bigg[ {\bigg(x \bigg) }^{(3)/(4) } + 1 \: - \: log \bigg| {\bigg(x\bigg) }^{(3)/(4) } + 1\bigg|\bigg] \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION


\sf{ \boxed{\begin{array}c \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^(2) x & \sf tanx + c\\ \\ \sf {cosec}^(2)x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \ cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf (1)/(x) & \sf logx+ c\\ \\ \sf {e}^(x) & \sf {e}^(x) + c\end{array}} }

User Zarzyk
by
7.7k points