Answer:
(a - d)/(c + b) = x
Explanation:
a - bx = cx + d
-d = -d Substract d from both sides
a - d - bx = cx
+ bx = bx Add bx to both sides
a - d = cx + bx Simply
a - d = x(c + b) Distributive
(a - d)/(c + b) = x(c + b)/(c + d) Divide both sides by (c + d)
(a - d)/(c + b) = x
Check
a - bx = cx + d
a - b(a - d)/(c + b) = c(a - d)/(c + b) + d
a(c + b) - b(a - d)/(c + d) · (c + d) = c(a - d)/(c - d) · (c + d) + d(c + b)
ac + ab -ab + bd = ac - cd + dc + bd
ac + bd = ac + bd check