216k views
2 votes
3x-(2x-1)=7x-(3*5x)+(-x+24)

1 Answer

4 votes

Answer:


\boxed{\boxed{\sf x=(23)/(10)}\: \sf or \:\boxed{x=2.3}}

_________________


\boxed{\sf Step\: By\:Step:- }


\sf 3x-\left(2x-1\right)=7x-\left(3* \:5x\right)+\left(-x+24\right)

Remove the parentheses:


\to\sf 3x-\left(2x-1\right)=7x-3* \:5x-x+24

Combine like terms:


\sf ^*7x-x=6x


\to\sf 3x-\left(2x-1\right)=6x-3* \:5x+24

Multiply 3 and 5x = 15x:-


\to\sf 3x-\left(2x-1\right)=6x-15x+24

Combine like terms:


\sf ^*6x-15x=-9x


\to\sf 3x-\left(2x-1\right)=-9x+24

Expand: 3x-(2x-1)= x+1


\to\sf x+1=-9x+24

Subtract 1 from both sides:


\to\sf x+1-1=-9x+24-1


\to\sf x=-9x+23

Add 9x to both sides:


\to\sf x+9x=-9x+23+9x


\to\sf 10x=23

Divide both sides by 10:


\to\sf \cfrac{10x}{10}=\cfrac{23}{10}


\to\sf x=\cfrac{23}{10}

________________________________

User Marco Weber
by
4.3k points