229k views
3 votes
√(112) - √(80) / √(20) - √(28) = ?​

User TechyDude
by
4.7k points

1 Answer

5 votes


\large\underline{\sf{Solution-}}

We need to solve,


(√(112)-√(80))/(√(20)-√(28))

We can write the above mentioned expression as,


\sf\longmapsto(√(2*2*2*2*7)-√(2*2*2*5))/(√(2*2*5)-√(2*2*7))

So,


\sf\longmapsto(√(4*4*7)-√(4*4*5))/(√(2^2*5)-√(2^2*7))

So,


\sf\longmapsto(√(4^2*7)-√(4^2*5))/(√(2^2*5)-√(2^2*7))

Hence,


\sf\longmapsto(4√(7)-4√(5))/(2√(5)-2√(7))

Taking common in respective terms,


\sf\longmapsto(4(√(7)-√(5)))/(2(√(5)-√(7)))

On cancelling 4 with 2,


\sf\longmapsto(4\!\!\!/^(\:2)(√(7)-√(5)))/(2\!\!\!/(√(5)-√(7)))


\sf\longmapsto(2(√(7)-√(5)))/((√(5)-√(7)))

Taking (-) common,


\sf\longmapsto(-2(√(5)-√(7)))/((√(5)-√(7)))

So, (√5 - √7) gets cut,

Hence,


\longmapsto\bf(√(112)-√(80))/(√(20)-√(28))=-2

User Dfranca
by
5.2k points