201k views
5 votes
/////////////////////////////////////////////////

/////////////////////////////////////////////////-example-1
User Png
by
5.1k points

1 Answer

2 votes

Answer:

  • 341

Explanation:

We observe the pattern:

  • 1, 5, 13, 25, ..

It can be put as:

  • 0 + 1, 1 + 4, 4 + 9, 9 + 16, ..

or

  • 0² + 1², 1² + 2², 2² + 3², 3² + 4², ..

The nth term is going to be:

  • (n - 1)² + n²

The sum of the 31 terms will be:

  • N = 0² + 1² + 1² + 2² + 2² + 3² + 3² + ... + 30² + 30² + 31²

or

  • N = 2(1² + 2² + 3² + ... + 30²) + 31²

Use the formula for sum of the first n squares:

  • 1² + 2² + 3² + ... + n² = n(n + 1)(2n + 1)/6

The sum N equals:

  • N = 2(30*31*61)/6 + 31² = 10*31*61 + 31²

And the value of N/31 is:

  • 10*31 + 31 = 341

User Mikael
by
5.4k points