93.6k views
2 votes
Factor.
(3y+2z)² - (3y-2z)²

1 Answer

2 votes

Answer:


(3\, y + 2\, z)^(2) - (3\, y - 2\, z)^(2) = 24\, y\, z

Explanation:

Make use of the fact that for any
a and
b:


\begin{aligned}& (a + b)\, (a - b) \\ =\; & a^(2) - a\, b + a\, b - b^(2) \\ =\; & a^(2) - b^(2)\end{aligned}.

In other words, the difference
(a^(2) - b^(2)) between two squares could be written as the product of
(a + b) and
(a - b).

Apply this identity to rewrite and simplify the expression in this question. In this example,
a = 3\, y + 2\, z whereas
b = 3\, y - 2\, z.


\begin{aligned} & \underbrace{(3\, y + 2\, z)^(2)}_(a^(2)) - \underbrace{(3\, y - 2\, z)^(2)}_(b^(2)) \\ =\; & \underbrace{((3\, y + 2\, z) + (3\, y - 2\, z))}_((a + b))\\ &* \underbrace{((3\, y + 2\, z) - (3\, y - 2\, z))}_((a - b)) \\ =\; &6\, y\, (3\, y + 2\, z - 3\, y + 2\, z) \\ =\; & 24\, y \, z \end{aligned}.

User Linnet
by
3.1k points