514,046 views
36 votes
36 votes
Find the square roots of 36 + 36sqrt3i

User Nwhaught
by
3.3k points

1 Answer

16 votes
16 votes

Answer:


3√(6)+3√(2)i and
-3√(6)-3√(2)i

Explanation:

For a complex number
z=a+bi in rectangular form, polar form is
z=r[cos(\theta)+isin(\theta)] where
r=√(a^2+b^2) and
\theta=tan^(-1)((b)/(a)):


r=√(a^2+b^2)\\\\r=\sqrt{(36)^2+(36√(3))^2}\\\\r=√(1296+3888)\\\\r=√(5184)\\\\r=72


\theta=tan^(-1)((b)/(a))\\ \\\theta=tan^(-1)((36√(3))/(36))\\ \\\theta=tan^(-1)(√(3))\\\\\theta=(\pi)/(3)

Thus, our complex number in polar form is
z=72[cos((\pi)/(3))+isin((\pi)/(3))]. This will help us determine the square roots of the complex number using the formula
\sqrt[n]{r}\biggr[cis\bigr({(\theta+2\pi k)/(n))\biggr] for
k=0,1,2,\: ... \:,n-1. Note that
cis(\theta)=cos(\theta)+isin(\theta):

1st square root for k = 2-1 = 1


\sqrt[n]{r}\biggr[cis\bigr({(\theta+2\pi k)/(n))\biggr]


\sqrt[2]{72}\biggr[cis\bigr({((\pi)/(3)+2\pi(1))/(2))\biggr]


6√(2)\biggr[cis\bigr({((\pi)/(3)+2\pi)/(2))\biggr]


6√(2)\biggr[cis\bigr((\pi)/(6)+\pi)\biggr]


6√(2)\biggr[cis\bigr((7\pi)/(6))\biggr]


6√(2)\biggr[cos((7\pi)/(6))+isin((7\pi)/(6))\biggr]\\ \\6√(2)(-(√(3))/(2)-(1)/(2)i)\\\\-3√(6)-3√(2)i

2nd square root for k = 1-1 = 0


\sqrt[6]{72}\biggr[cis\bigr({((\pi)/(3)+2\pi(0))/(2)\bigr)\biggr]


6√(2)\biggr[cis((\pi)/(6) )\biggr]


6√(2)[cos((\pi)/(6))+isin((\pi)/(6))]\\ \\6√(2)((√(3))/(2)+(1)/(2))\\\\3√(6)+3√(2)i

Therefore, the square roots of
36+36√(3)i are
3√(6)+3√(2)i and
-3√(6)-3√(2)i.

User Nasmorn
by
2.7k points