62.2k views
1 vote
If x = a sin α, cos β, y = b sin α.sin β and z = c cos α then (x²/a²) + (y²/b²) + (z²/c²) = ?​

User Nrion
by
4.3k points

1 Answer

2 votes


\large\underline{\sf{Solution-}}

Given:


\rm \longmapsto x = a \sin \alpha \cos \beta


\rm \longmapsto y = b \sin \alpha \sin \beta


\rm \longmapsto z = c\cos \alpha

Therefore:


\rm \longmapsto (x)/(a) = \sin \alpha \cos \beta


\rm \longmapsto (y)/(b) = \sin \alpha \sin \beta


\rm \longmapsto (z)/(c) = \cos \alpha

Now:


\rm = \frac{ {x}^(2) }{ {a}^(2)} + \frac{ {y}^(2) }{ {b}^(2) } + \frac{ {z}^(2) }{ {c}^(2) }


\rm = { \sin}^(2) \alpha \cos^(2) \beta + { \sin}^(2) \alpha \sin^(2) \beta + { \cos}^(2) \alpha


\rm = { \sin}^(2) \alpha (\cos^(2) \beta + \sin^(2) \beta )+ { \cos}^(2) \alpha


\rm = { \sin}^(2) \alpha \cdot1+ { \cos}^(2) \alpha


\rm = { \sin}^(2) \alpha + { \cos}^(2) \alpha


\rm = 1

Therefore:


\rm \longmapsto\frac{ {x}^(2) }{ {a}^(2)} + \frac{ {y}^(2) }{ {b}^(2) } + \frac{ {z}^(2) }{ {c}^(2) } = 1

User Raj Pawan Gumdal
by
4.1k points