482,328 views
34 votes
34 votes

\rm\frac{13}8 + \sum \limits_(n = 0)^( \infty ) \frac{( - {1)}^(n + 1) (2n + 1)! }{n! (n + 2)! {4}^(2n + 3) } \\

User Thewb
by
2.8k points

1 Answer

8 votes
8 votes

Rewrite the factorial parts of the summand as


((2n+1)!)/(n!(n+2)!) = ((2n+1)(2n!))/((n+2)(n+1)(n!)^2) = (2n+1)/((n+2)(n+1)) \dbinom{2n}n

where
\binom nk is the binomial coefficient, and
\binom{2n}n are the so-called central binomial coefficients.

Expand the rational expression into partial fractions:


(2n+1)/((n+2)(n+1)) = \frac3{n+2} - \frac1{n+1}

Pull out a constant factor and collect the exponential terms.


((-1)^(n+1))/(4^(2n+3)) = -\frac1{64} \left(-\frac1{16}\right)^n

The sum we want is now


\displaystyle \frac{13}8 - \frac1{64} \sum_(n=0)^\infty \binom{2n}n \left(\frac3{n+2} - \frac1{n+1}\right) \left(-\frac1{16}\right)^n

Let f(x) and g(x) be functions with power series expansions


\displaystyle f(x) = \sum_(n=0)^\infty \binom{2n}n (x^n)/(n+1)


\displaystyle g(x) = \sum_(n=0)^\infty \binom{2n}n (x^n)/(n+2)

and recall the well-known binomial series


\displaystyle \frac1{√(1-4x)} = \sum_(n=0)^\infty \binom{2n}n x^n

which converges for |x| < 1/4.

Integrating both sides yields


\displaystyle \int (dx)/(√(1-4x)) = \int \sum_(n=0)^\infty \binom{2n}n x^n \, dx


\displaystyle -\frac12 √(1-4x) = C_1 + \sum_(n=0)^\infty \binom{2n}n (x^(n+1))/(n+1)

Taking x = 0 on both sides, it follows that C₁ = -1/2. We then see that


\displaystyle f(x) = (1-√(1-4x))/(2x)

Step back and multiply both sides of the binomial series identity by x, then integrate. This yields


\displaystyle \int \frac x{√(1-4x)} \, dx = \int \sum_(n=0)^\infty \binom{2n}n x^(n+1) \, dx


\displaystyle -\frac1{12} √(1-4x) (1 + 2x) = C_2 + C_1 x + \sum_(n=0)^\infty \binom{2n}n (x^(n+2))/(n+2)

Taking x = 0 again points to C₂ = -1/12. Hence


\displaystyle g(x) = (1 - √(1-4x)(1+2x))/(12x^2)

Then the value of the sum we want is


\displaystyle \frac{13}8 - \frac1{64} \left(3g\left(-\frac1{16}\right) - f\left(\frac1{16}\right)\right) = \frac{1+\sqrt5}2 = \boxed{\phi}

where ɸ ≈ 1.618 is the golden ratio.

User Nate Weiner
by
2.7k points