534,769 views
30 votes
30 votes
Which expression is equivalent to this polynomial?

6x2 + 10x − 56

User Marinelle
by
2.6k points

1 Answer

14 votes
14 votes

Given :


\longrightarrow \sf \qquad {6x}^(2) + 10x - 56

We can write it as,


\longrightarrow \sf \qquad2 \bigg({3x}^(2) + 5x - 28 \bigg)

We have to find the two numbers a and b such that,


\longrightarrow \sf \qquad a + b = 5


\longrightarrow \sf \qquad a b = 84

Obviously, the two numbers are 7 and 12.


{\longrightarrow \sf \qquad2 \bigg({3x}^(2) - 7x + 12x- 28 \bigg)}


{\longrightarrow \sf \qquad2 \bigg[x \bigg(3x-7 \bigg) +4 \bigg(3x-7\bigg)} \bigg]


{\longrightarrow \sf \qquad{2 \bigg(3x - 7 \bigg) \bigg(x + 4\bigg)}}

Therefore,


{\longrightarrow \bf \qquad{2 \bigg(3x - 7 \bigg) \bigg(x + 4\bigg)} \: is \: equivalent} \bf \: \: to \: \: {6x}^(2) + 10x - 56

User Napster Scofield
by
2.8k points