172k views
1 vote
Can someone help me out !

got stuck in this question for an hour.




Can someone help me out ! got stuck in this question for an hour. ​-example-1
User Daye
by
2.9k points

1 Answer

0 votes

Answer:

See below

Explanation:

Considering
$\vec{u}, \vec{v}, \vec{w} \in V^3 \lambda \in \mathbb{R}$, then


\Vert \vec{u} \cdot \vec{v}\Vert \leq \Vert\vec{u}\Vert \Vert\vec{v}\Vert$ we have $(\vec{u} \cdot \vec{v})^2 \leq (\vec{u} \cdot \vec{u})(\vec{v} \cdot \vec{v}) \quad$

This is the Cauchy–Schwarz Inequality, therefore


$\left(\sum_(i=1)^(n) u_i v_i \right)^2 \leq \left(\sum_(i=1)^(n) u_i \right)^2 \left(\sum_(i=1)^(n) v_i \right)^2 $

We have the equation


(\sin ^4 x )/(a) + (\cos^4 x )/(b) = (1)/(a+b), a,b\in\mathbb{N}

We can use the Cauchy–Schwarz Inequality because
a and
b are greater than 0. In fact,
a>0 \wedge b>0 \implies ab>0. Using the Cauchy–Schwarz Inequality, we have


(\sin ^4 x )/(a) + (\cos^4 x )/(b) =((\sin^2 x)^2)/(a)+((\cos^2 x))/(b)\geq ((\sin^2 x+\cos^2 x)^2)/(a+b) = (1)/(a+b)

and the equation holds for


\frac{\sin^2{x}}{a}=\frac{\cos^2{x}}{b}=(1)/(a+b)


\implies\quad \sin^2 x = (a)/(a+b) \text{ and }\cos^2 x = (b)/(a+b)

Therefore, once we can write


\sin^2 x = (a)/(a+b) \implies \sin^(4n)x = (a^(2n))/((a+b)^(2n)) \implies(\sin^(4n)x )/(a^(2n-1)) = (a^(2n))/((a+b)^(2n)\cdot a^(2n-1))

It is the same thing for cosine, thus


\cos^2 x = (b)/(a+b) \implies (\cos^(4n)x )/(b^(2n-1)) = (b^(2n))/((a+b)^(2n)\cdot b^(2n-1))

Once


(a^(2n))/((a+b)^(2n)\cdot a^(2n-1))+ (b^(2n))/((a+b)^(2n)\cdot b^(2n-1)) =(a^(2n))/((a+b)^(2n) \cdot (a^(2n))/(a) ) + (b^(2n))/((a+b)^(2n)\cdot (b^(2n))/(b) )


=(1)/((a+b)^(2n) \cdot (1)/(a) ) + (1)/((a+b)^(2n)\cdot (1)/(b) ) = (a)/((a+b)^(2n) ) + (b)/((a+b)^(2n) ) = (a+b)/((a+b)^(2n) )

dividing both numerator and denominator by
(a+b), we get


(a+b)/((a+b)^(2n) ) = (1)/((a+b)^(2n-1) )

Therefore, it is proved that


(\sin ^(4n) x )/(a^(2n-1)) + (\cos^(4n) x )/(b^(2n-1)) = (1)/((a+b)^(2n-1)), a,b\in\mathbb{N}

User Vitruvius
by
2.9k points