207k views
0 votes
Resolve into factor: {Σ_(x,y,z) x}³ - Σ_(x,y,z) x³.​

Resolve into factor: {Σ_(x,y,z) x}³ - Σ_(x,y,z) x³.​-example-1

1 Answer

1 vote

Explanation:


\bf \underline{Given \:Question-} \\


\textsf{Resolve in to factors }


\sf \: {\bigg(\displaystyle\sum_(x,y,z)\rm x\bigg)}^(3) - \displaystyle\sum_(x,y,z)\rm {x}^(3)


\red{\large\underline{\sf{Solution-}}}

Given expression is


\rm :\longmapsto\: \: {\bigg(\displaystyle\sum_(x,y,z)\rm x\bigg)}^(3) - \displaystyle\sum_(x,y,z)\rm {x}^(3)

can be rewritten as


\rm \: = \: {(x + y + z)}^(3) - ( {x}^(3) + {y}^(3) + {z}^(3))

can be further rewritten as


\rm \: = \: {(x + y + z)}^(3) - {x}^(3) - {y}^(3) - {z}^(3)


\rm \: = \: [{(x + y + z)}^(3) - {x}^(3)] - [{y}^(3) + {z}^(3)]

We know,


\boxed{\tt{ {x}^(3) + {y}^(3) = (x + y)( {x}^(2) + {y}^(2) - xy)}}

and


\boxed{\tt{ {x}^(3) - {y}^(3) = (x - y)( {x}^(2) + {y}^(2) + xy)}}

So, using these Identities, we get


\rm =(x + y + z - x)[ {(x + y + z)}^(2) + {x}^(2) - x(x + y + z)] - (y + z)( {y}^(2) + {z}^(2) - yz)


\rm =(y + z)[ {(x + y + z)}^(2) + {x}^(2) + {x}^(2) + xy + xz] - (y + z)( {y}^(2) + {z}^(2) - yz)


\rm =(y + z)[ {(x + y + z)}^(2) + {2x}^(2) + xy + xz] - (y + z)( {y}^(2) + {z}^(2) - yz)


\rm =(y + z)[ {(x + y + z)}^(2) + {2x}^(2) + xy + xz - {y}^(2) - {z}^(2) + yz]


\rm =(y + z)[ {x}^(2)+{y}^(2)+{z}^(2) + 2xy + 2yz + 2zx + {2x}^(2) + xy + xz - {y}^(2) - {z}^(2) + yz]


\rm =(y + z)[3{x}^(2) + 3xy + 3yz + 3zx]


\rm \: = \: 3(y + z)( {x}^(2) + xy + yz + zx)


\rm \: = \: 3(y + z)[x(x + y) + z(x + y)]


\rm \: = \: 3(y + z)[(x + y)(x + z)]


\rm \: = \: 3(y + z)(x + y)(x + z)

Hence,


\boxed{\tt{ \sf {\bigg(\displaystyle\sum_(x,y,z)\rm x\bigg)}^(3) - \displaystyle\sum_(x,y,z)\rm {x}^(3) = 3(x + y)(y + z)(z + x)}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to know:-

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

User Epi
by
3.5k points