Answer:
Length of the diameter of the circle = 10 units long
Explanation:
Given points A (0, -7) and B (8, -1):
We can determine the diameter of the circle by solving for the distance between the two given points.
We'll use the following distance formula:
![d = \sqrt{(x_(2) - x_(1))^(2) + (y_(2) - y_(1))^(2) }](https://img.qammunity.org/2022/formulas/mathematics/college/2uu82d969rp77w6zefe7l6bhthbl3j5x7k.png)
Let
= (0, -7)
= (8, -1)
Plug in these values into the distance formula
![d = \sqrt{(x_(2) - x_(1))^(2) + (y_(2) - y_(1))^(2) }](https://img.qammunity.org/2022/formulas/mathematics/college/2uu82d969rp77w6zefe7l6bhthbl3j5x7k.png)
![d = \sqrt{(8 - 0)^(2) + (-1 - (-7))^(2) }](https://img.qammunity.org/2022/formulas/mathematics/college/y5dpcgkubak5gtnn4yb43oascx24wby3go.png)
![d = \sqrt{(8)^(2) + (-1 + 7)^(2) }](https://img.qammunity.org/2022/formulas/mathematics/college/4l71hdw07fveh75ld1pxh1fxse0zikxnr4.png)
![d = \sqrt{(8)^(2) + (6)^(2) }](https://img.qammunity.org/2022/formulas/mathematics/college/hzbskjfsoz8l04ar7k8l2ds8iz5g74xa4n.png)
![d = √(64 + 36)](https://img.qammunity.org/2022/formulas/mathematics/high-school/jmaed0c70v5ned35luny6v5bdjogxx4z90.png)
![d = √(100)](https://img.qammunity.org/2022/formulas/mathematics/high-school/zqebimff5jng1rldr1uctvntl2709umbx1.png)
d = 10
Therefore, the distance between points A and B is 10 units long.