232,371 views
2 votes
2 votes
Heya ! can anyone help me with this ?



Heya ! can anyone help me with this ? ​-example-1
User Rosine
by
3.1k points

1 Answer

4 votes
4 votes

Answer:

See below

Explanation:


\text{if } (\sin ^4 x)/(2) + (\cos^4 x)/(3) = (1)/(5), \text{ then show that } (\sin ^8 x)/(8) + (\cos^8 x)/(27)=(1)/(125)

Considering the identity


\boxed{ \sin ^2 x+\cos^2 x = 1}

then, we have
\sin ^2 x+\cos^2 x = 1 \iff \cos^2 x = 1 -\sin ^2 x, thus


(\sin ^4 x)/(2) + ((\cos^2 x)^2)/(3) =(\sin ^4 x)/(2) + (( 1 -\sin ^2)^2)/(3)


\text{For } \sin^2x =y: (y^2)/(2) + (( 1 -y)^2)/(3) = ( 3y^2)/(3\cdot2) + (2( 1 -y)^2)/(2\cdot3) = (3y^2 + 2( 1 -y)^2)/(6)


= (3y^2 + 2-4y+2y^2)/(6) = (5y^2 -4y+2)/(6)

We are considering


(5y^2 -4y+2)/(6) = (1)/(5) \iff (5y^2 -4y+2)/(6) - (1)/(5) = 0 \iff (25y^2-20y+4)/(30) =0

Therefore, multiplying both sides by 30,


25y^2-20y+4 = 0

Using the quadratic equation,


y=(-(-20)\pm √((-20)^2-4\cdot 25\cdot 4))/(2\cdot 25) = (20\pm √(0))/(50) = (20)/(50) = (2)/(5)

The roots are equal.

Once


y=(2)/(5) \implies \sin^2 x = (2)/(5)

Again, considering the identity


\sin ^2 x+\cos^2 x = 1


\sin^2 x = (2)/(5) \implies (2)/(5)+\cos^2 x = 1 \iff \cos^2 x = (3)/(5)

Substituting both values in the initial equations,


((4)/(25) )/(2) + ((9)/(25))/(3) = (1)/(5) \implies (4)/(50) +(9)/(75) = (1)/(5) \implies (2)/(25) +(3)/(25) = (1)/(5)\implies (1)/(5) = (1)/(5)


((16)/(625))/(8) + ((81)/(625))/(27)=(1)/(125)\implies (16)/(5000) + (81)/(16875) = (1)/(125) \implies (2)/(625)+(3)/(625) = (1)/(125)


\implies (1)/(125)= (1)/(125)


\therefore (\sin ^4 x)/(2) + (\cos^4 x)/(3) = (1)/(5) \iff (\sin ^8 x)/(8) + (\cos^8 x)/(27)=(1)/(125)

User Wasim Khan
by
3.1k points