488,493 views
11 votes
11 votes
Please answer this question​

Please answer this question​-example-1
User Vijay Chouhan
by
3.1k points

1 Answer

14 votes
14 votes

We have the given indefinite integral ;


{:\implies \quad \displaystyle \sf \int (x+1)/(x(xe^(x)+2))dx}

We will use substitution hence to solving this integral

Now , put ;


{:\implies \quad \sf e^(x)=u}

So that :


{:\implies \quad \sf dx=(du)/(u)\quad and\quad log(u)=x}

Now , putting the values in the integral , it can be written as ;


{:\implies \quad \displaystyle \sf \int \frac{log(u)+1}{log(u)\{ulog(u)+2\}}* (du)/(u)}

Now , we will again use substitution method for making the integral easy. So put ;


{:\implies \quad \displaystyle \sf ulog(u)+2=v}

So that ;


{:\implies \quad \displaystyle \sf du=(dv)/(log(u)+1)\quad and\quad ulog(u)=v-2}

Now , we have ;


{:\implies \quad \displaystyle \sf \int \frac{\cancel{\{log(u)+1\}}}{log(u)v}* \frac{dv}{\cancel{\{log(u)+1\}}u}}


{:\implies \quad \displaystyle \sf \int \frac{dv}{v\{ulog(u)\}}}

Now , putting the value of ulog(u) = v - 2


{:\implies \quad \displaystyle \sf \int (dv)/(v(v-2))}

Now , using partial fraction decomposition , ths given integral can be further written as ;


{:\implies \quad \displaystyle \sf (1)/(2)\int \left((1)/(v-2)-(1)/(v)\right)dv}

Now ,as integrals follow distributive property. So ;


{:\implies \quad \displaystyle \sf (1)/(2)\left(\int (1)/(v-2)dv-\int (1)/(v)dv\right)}


v-2


(v-2)/(v)\bigg

Putting value of v ;


(ulog(u)+2-2)/(ulog(u)+2)\bigg

Now, putting value of u ;


(e^(x)log(e^(x)))/(e^(x)log(e^(x))+2)\bigg


+C


{:\implies \quad \therefore \displaystyle \underline{\underline +C}}

Used Concepts :-


  • {\boxed\displaystyle \bf \int (1)/(x)dx=log}


  • {\boxed{\displaystyle \bf (d)/(dx)(u\cdot v)=v(du)/(dx)+u(dv)/(dx)}}


  • {\boxed{\displaystyle \bf log(a)-log(b)=log\left((a)/(b)\right)}}


  • {\boxed{\displaystyle \bf log(a^b)=blog(a)}}


  • {\boxed{\displaystyle \bf (d)/(dx)\{log(x)\}=(1)/(x)}}


  • {\boxed{\displaystyle \bf (d)/(dx)(e^x)=e^(x)}}
User Roman Grinev
by
3.3k points