We have the given indefinite integral ;
We will use substitution hence to solving this integral
Now , put ;
![{:\implies \quad \sf e^(x)=u}](https://img.qammunity.org/2023/formulas/mathematics/college/7bs919obzw6xn9t5lesxqo1ksjc84tyklu.png)
So that :
![{:\implies \quad \sf dx=(du)/(u)\quad and\quad log(u)=x}](https://img.qammunity.org/2023/formulas/mathematics/college/l1uwa7ysj5aozrpbxt0gpejqfqe96o1vjm.png)
Now , putting the values in the integral , it can be written as ;
Now , we will again use substitution method for making the integral easy. So put ;
So that ;
![{:\implies \quad \displaystyle \sf du=(dv)/(log(u)+1)\quad and\quad ulog(u)=v-2}](https://img.qammunity.org/2023/formulas/mathematics/college/zitkq7s8yn1vvpyf49ys3603mybzh8szpb.png)
Now , we have ;
![{:\implies \quad \displaystyle \sf \int \frac{dv}{v\{ulog(u)\}}}](https://img.qammunity.org/2023/formulas/mathematics/college/qct0oz3d45mzffd62qbua3velpjmvz2orj.png)
Now , putting the value of ulog(u) = v - 2
![{:\implies \quad \displaystyle \sf \int (dv)/(v(v-2))}](https://img.qammunity.org/2023/formulas/mathematics/college/jg1zer8dmih2bx6jkdbs76xo1jim6334ce.png)
Now , using partial fraction decomposition , ths given integral can be further written as ;
Now ,as integrals follow distributive property. So ;
Putting value of v ;
Now, putting value of u ;
Used Concepts :-