127,685 views
22 votes
22 votes
Solve all 3 Questions. 50 Points + Brainelist ​

Solve all 3 Questions. 50 Points + Brainelist ​-example-1
User Daniel Euchar
by
3.0k points

1 Answer

13 votes
13 votes

Answer:

i) Using log law:
\log_aa=1


\implies \log_55+1=1+1=2

ii)
\log \left((15)/(8)\right)+4 \log 2-\log 3

Using log law
a \log b=\log b^a:


\implies \log \left((15)/(8)\right)+\log 2^4-\log 3


\implies \log \left((15)/(8)\right)+\log 16-\log 3

Using log law
\log a-\log b=\log ((a)/(b)):


\implies \log \left((15)/(8)\right)+\log\left((16)/(3)\right)

Using log law
\log a+\log b=\log(ab):


\implies \log \left((15)/(8)\cdot (16)/(3)\right)


\implies \log 10

Using log law:
\log_aa=1


\implies \log_(10) 10=1

iii) Take log of base 10:


\log_(10)(√(8.357)*0.895^2)


\implies \frac12\log_(10)(8.357)+2\log_(10)(0.895)

Log tables

The characteristic of the logarithm of a number is the exponent of 10 in its scientific notation.

The mantissa is found using the log tables and is always prefixed by a decimal point.

The row is the first two non-zero digits of the number, and the column is the 3rd digit of the number

Use the log tables to find
\log_(10)(8.357):

8.357 = 8.357 × 10⁰

⇒ characteristic = 0

log table: row 83, column 5 ⇒ mantissa 9217

(as there is a 4th digit) Mean difference 7 = 4

mantissa + mean difference = 9217 + 4 = 9221 ⇒ 0.9221

characteristic + mantissa = 0 + 0.9221 = 0.9221

Therefore,
\log_(10)(8.357)=0.9221

Use the log tables to find
\log_(10)(0.895):


0.895 = 8.95* 10^(-1)

⇒ characteristic = -1

log table: row 89, column 5 ⇒ mantissa 9518⇒ 0.9518

characteristic + mantissa = -1 + 0.9518= -0.0482

Therefore,
\log_(10)(0.895)=-0.0482

Therefore,


\implies \frac12\log_(10)(8.357)+2\log_(10)(0.895)


\implies \frac12 \cdot 0.9221+2\cdot-0.0482


\implies 0.36465

Therefore,


\log_(10)(√(8.357)*0.895^2)=0.36465

Using
\log_ab=c \implies a^c=b


\implies √(8.357)*0.895^2=10^(0.36465)


\implies √(8.357)*0.895^2=2.3155

User Ebbelink
by
3.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.