203k views
3 votes
Rewrite the expression in the form x^n

Rewrite the expression in the form x^n-example-1

1 Answer

5 votes

Answer:


\sqrt[3]{x}

Explanation:


\sqrt[4]{ \frac{ {x}^(2) }{x ^{ (2)/(3) } } } = \frac{ \sqrt[4]{ {x}^(2) } }{ \sqrt[4]{ \sqrt[3]{ {x}^(2) } } } = \frac{x ^{ (2)/(4) } }{(x ^{ (2)/(3) } ) ^{ (1)/(4) } } \\ \\ = \frac{ {x}^{ (1)/(2) } }{ {x}^{ (2)/(12) } } = \frac{ {x}^{ (1)/(2) } }{ {x}^{ (1)/(6) } } = {x}^{ (1)/(2) - (1)/(6) } = {x}^{ (1)/(3) } = \sqrt[3]{x}

I hope I helped you^_^

User Nic Strong
by
3.4k points