88,326 views
39 votes
39 votes
Given a standardized normal distribution​ (with a mean of 0 and a standard deviation of​ 1), complete parts​ (a) through​ (d) below.

Click here to view page 1 of the cumulative standardized normal distribution table. LOADING...
Click here to view page 2 of the cumulative standardized normal distribution table. LOADING...
Question content area bottom
Part 1
a. What is the probability that Z is between​ -1.52 and​ 1.86? ​(Round to four decimal places as​ needed.)
A.
​P(-1.52 < Z​ < 1.86)​ =NORM.S.DIST(1.86,0)-NORM.S.DIST(-1.52,0)= -0.0549
B.
​P(-1.52 < Z​ < 1.86)​ =NORM.S.DIST(1.86,1)-NORM.S.DIST(-1.52,1)=0.9043
C.
​P(-1.52 < Z​ < 1.86)​ =NORM.S.DIST(1.86,1)+NORM.S.DIST(-1.52,1)=1.0328
D.
​P(-1.52 < Z​ < 1.86)​ =NORM.S.DIST(-1.52,1)-NORM.S.DIST(1.86,1)= -0.9043
b. What is the probability that Z is less than​ -1.52 or greater than​ 1.86? ​(Round to four decimal places as​ needed.)
A.
​P(Z <​ -1.52 OR Z​ > 1.86)​ =NORM.S.DIST(-1.52,0)+(1-NORM.S.DIST(1.86,0))=1.0549
B.
​P(Z <​ -1.52 OR Z​ > 1.86)​ =NORM.S.DIST(-1.52,1)-(1+NORM.S.DIST(1.86,1))= -1.9043
C.
​P(Z <​ -1.52 OR Z​ > 1.86)​ =NORM.S.DIST(-1.52,1)+NORM.S.DIST(1.86,1)=0.1964
D.
​P(Z <​ -1.52 OR Z​ > 1.86)​ =NORM.S.DIST(-1.52,1)+(1-NORM.S.DIST(1.86,1))=0.0957

User Sarafina
by
3.1k points

1 Answer

19 votes
19 votes

Answer:

d is the right answer that's my answer

User Necrifede
by
2.5k points