Given a standardized normal distribution (with a mean of 0 and a standard deviation of 1), complete parts (a) through (d) below.
Click here to view page 1 of the cumulative standardized normal distribution table. LOADING...
Click here to view page 2 of the cumulative standardized normal distribution table. LOADING...
Question content area bottom
Part 1
a. What is the probability that Z is between -1.52 and 1.86? (Round to four decimal places as needed.)
A.
P(-1.52 < Z < 1.86) =NORM.S.DIST(1.86,0)-NORM.S.DIST(-1.52,0)= -0.0549
B.
P(-1.52 < Z < 1.86) =NORM.S.DIST(1.86,1)-NORM.S.DIST(-1.52,1)=0.9043
C.
P(-1.52 < Z < 1.86) =NORM.S.DIST(1.86,1)+NORM.S.DIST(-1.52,1)=1.0328
D.
P(-1.52 < Z < 1.86) =NORM.S.DIST(-1.52,1)-NORM.S.DIST(1.86,1)= -0.9043
b. What is the probability that Z is less than -1.52 or greater than 1.86? (Round to four decimal places as needed.)
A.
P(Z < -1.52 OR Z > 1.86) =NORM.S.DIST(-1.52,0)+(1-NORM.S.DIST(1.86,0))=1.0549
B.
P(Z < -1.52 OR Z > 1.86) =NORM.S.DIST(-1.52,1)-(1+NORM.S.DIST(1.86,1))= -1.9043
C.
P(Z < -1.52 OR Z > 1.86) =NORM.S.DIST(-1.52,1)+NORM.S.DIST(1.86,1)=0.1964
D.
P(Z < -1.52 OR Z > 1.86) =NORM.S.DIST(-1.52,1)+(1-NORM.S.DIST(1.86,1))=0.0957