497,539 views
8 votes
8 votes
What is the value of y?

What is the value of y?-example-1
User Untill
by
3.1k points

2 Answers

11 votes
11 votes

Apply Pythagorean theorem in ∆TMU


\\ \rm\Rrightarrow UT^2=6^2-3^2=36-9=27


\\ \rm\Rrightarrow UT=3√(3)

Now

  • in ∆TNU


\\ \rm\Rrightarrow y^2=(3\sqrt)^2+9^2


\\ \rm\Rrightarrow y^2=27+81


\\ \rm\Rrightarrow y^2=108


\\ \rm\Rrightarrow y=6√(3)

User Daniel Hutton
by
2.6k points
26 votes
26 votes

Answer:

6√3 units

Explanation:

Similar right triangle theorem states that as ΔNUT ≅ ΔTUM then

NT : NU = TM : TU

First find the length of TU using Pythagoras' Theorem: a² + b² = c²

(where a and b are the legs, and c is the hypotenuse, of a right triangle)

⇒ UM² + TU² = TM²

⇒ 3² + TU² = 6²

⇒ TU² = 27

⇒ TU = √(27)

⇒ TU = 3√3

Given:

  • NT = y
  • NU = 9
  • TM = 6
  • TU = 3√3

NT : NU = TM : TU

⇒ y : 9 = 6 : 3√3


\implies (y)/(9)=(6)/(3√(3) )


\implies (3√(3))y=6 * 9


\implies y=(54)/(3√(3))


\implies y=6√(3)

User Samkass
by
2.5k points