110k views
0 votes
1 + 10 square theta (1 - sin square theta is equals to 1


1 Answer

4 votes

Let's prove


\boxed{\sf 1+tan^2\theta(1-sin^2\theta)=1}

LHS


\\ \sf\longmapsto 1+tan^2\theta(1-sin^2\theta)


\\ \sf\longmapsto 1+(sin^2\theta)/(cos^2\theta)(1-sin^2\theta)


\\ \sf\longmapsto (cos^2\theta+sin^2\theta)/(cos^2\theta)(1-sin^2\theta)


\\ \sf\longmapsto (1)/(cos^2\theta)(1-sin^2\theta)


\\ \sf\longmapsto (1-sin^2\theta)/(cos^2\theta)


\\ \sf\longmapsto (1-sin^2\theta)/(1-sin^2\theta)


\\ \sf\longmapsto 1

Hence provee

User Lukas Risko
by
5.7k points