75.1k views
19 votes
Can you find the Volume of the figure?

Can you find the Volume of the figure?-example-1

2 Answers

4 votes

Answer:

1920 cm³

Explanation:

The volume of a cuboid is the product of its dimensions:

V = LWH

__

These two cuboids have the same width and depth, so can be stacked on top of each other to give a cuboid with the dimensions ...

(14 +10) = 24 cm high

8 cm deep

10 cm wide

Then the volume is ...

V = LWH = (8 cm)(10 cm)(24 cm) = 1920 cm³

The total volume is 1920 cubic centimeters.

User Njaknjak
by
4.0k points
10 votes


\qquad \qquad \huge\underline{\boxed{\sf{Aиswєя} } } \: \ddot \smile

↬ What we need to know before we solve :


\sf \: Volume \: of \: a \: Cuboid = Length × Width × Height

✦ Now, let's proceed further ~

✰ Part the structure into two cuboids of dimensions :


\longrightarrow \sf 10 \: cm * 8 \: cm * 14 \: cm

and


\longrightarrow \sf 10 \: cm * 10 \: cm * 8\: cm

✦ Find out volume of each cuboid

Cuвσíd #1


\qquad \dashrightarrow \sf {(10 * 8 * 14) \: cm {}^(3) }


\qquad \dashrightarrow \sf 1120 \: cm {}^(3)

Cuвσíd #2


\qquad \dashrightarrow \sf {(10 * 10 * 8) \: cm {}^(3) }


\qquad \dashrightarrow \sf 800 \: cm {}^(3)

➳ Aѕ wє cαn ѕєє, vσlumє σf thє whσlє fígurє íѕ :


\qquad \longmapsto\sf \sf{Vol \#1 + Vol \#2}


\qquad \longmapsto\sf \sf{(1120 + 800}) \: {cm}^(3)


\qquad \therefore\sf \:volume_((total)) = 1920 \:cm {}^( 3)


\huge \dag \: \\ormalsize \sf \boxed{ \underline{ǤríʍɌεαƿєr}} \: \huge \dag

User Magnus Melwin
by
3.9k points