Answer:
,
![3=x](https://img.qammunity.org/2022/formulas/mathematics/high-school/m7iw8xgyl1pxt09wm45n2c8c8sf0m8u6kn.png)
Explanation:
One is given the following equation:
![y=6x-2x^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/wdp1qtg7beao7vuh8cw6qdj8t9ojd2qwko.png)
Factor this expression:
![y=-2x(x-3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/n7l91b12t8qz8str0usviwbjt3fdyp2tv1.png)
Set the equation equal to (0), then use the zero-product property to solve for (x). The zero product property states that any number times zero equals zero. Thus, one can apply this here to solve for (x):
![0=-2x(x-3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/it9nx5itlmpyko464ospyv24fkr8bwvsy3.png)
![0=x-3](https://img.qammunity.org/2022/formulas/mathematics/high-school/htj2qyobnbjrt0p8gfnp5vrkcvar2st2yk.png)
Inverse operations,
![0=x-3](https://img.qammunity.org/2022/formulas/mathematics/high-school/htj2qyobnbjrt0p8gfnp5vrkcvar2st2yk.png)
![3=x](https://img.qammunity.org/2022/formulas/mathematics/high-school/m7iw8xgyl1pxt09wm45n2c8c8sf0m8u6kn.png)