144k views
1 vote
Simplify

√(15) ( - √(3n) + 4n)
please show all work!​

2 Answers

1 vote

Laws to be used:-


\boxed{\sf a(b+c)=ab+bc}


\boxed{\sf √(p)√(q)=√(pq)}

Solution


\\ \rm\longmapsto √(15)(-√(3n)+4n)


\\ \rm\longmapsto -√(15)√(3n)+4√(15)n


\\ \rm\longmapsto -√(3(15)n)+4√(15)n


\\ \rm\longmapsto -√(3(3)(5)n)+4√(15)n


\\ \rm\longmapsto -3√(5)n+4√(15n)

Or we can break 15n


\\ \rm\longmapsto -3√(5)n+4√(3(5)n)


\\ \rm\longmapsto -3√(5)n+4√(3)√(5n)

User PetarS
by
7.8k points
4 votes

Answer:


\displaystyle - 3 √(5n) + 4 √(15) n

Explanation:

we would like to simplify the following expression:


\displaystyle √(15) ( - √(3n) + 4n)

recall distribution property thus:


\displaystyle - √(3n) √(15) + 4n √(15)

remember that,


  • \displaystyle √(a) √(b) = √(ab)

so assign variables:


  • a \implies 3n

  • b \implies 15

simplify Multiplication:


\displaystyle - √(45n) + 4 √(15) n

rewrite 45 as 9×5:


\displaystyle - √(9 * 5n) + 4 √(15) n

utilize the formula:


\displaystyle - √(9 ) √(5n) + 4 √(15) n

simplify square:


\displaystyle \boxed{- 3 √(5n) + 4 √(15) n}

and we're done!

User Simon Munro
by
9.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories