Answer:
![(dy)/(dx) = - \frac{ {x}^(3) }{ {y}^(3) }](https://img.qammunity.org/2022/formulas/mathematics/college/myb0aeba89jsculd436lggzohzbithda7s.png)
Explanation:
Differentiate both sides of the equation (consider y as a function of x).
![(d)/(dx) ( {x}^(4) + {y}^(4) (x)) = (d)/(dx) (16)](https://img.qammunity.org/2022/formulas/mathematics/college/88nhoriofjubj55ommkfspy81u2ebt75bk.png)
the derivative of a sum/difference is the sum/difference of derivatives.
![( (d)/(dx) ( {x}^(4) + {y}^(4) (x))](https://img.qammunity.org/2022/formulas/mathematics/college/9wlzc20qtrm0gyl9ypmb52u3az98v4gg4m.png)
![= ( (d)/(dx) ( {x}^(4) ) + (d)/(dx) ( {y}^(4) (x)))](https://img.qammunity.org/2022/formulas/mathematics/college/43gyhg9vfk7e2vb1haca5f1ccnr6579mp1.png)
the function of y^4(x) is the composition of f(g(x)) of the two functions.
the chain rule:
![(d)/(dx) (f(g(x))) = (d)/(du) (f(u)) (d)/(dx) (g(x))](https://img.qammunity.org/2022/formulas/mathematics/college/cvokjuf0pvh9i7rdrk0t70uvmzgbp25uc1.png)
![= ( (d)/(du) ( {u}^(4) ) (d)/(dx) (y(x))) + (d)/(dx) ( {x}^(4) )](https://img.qammunity.org/2022/formulas/mathematics/college/mkqhzypj79a27bb0rvb4szjq8kj1mgfi6n.png)
apply the power rule:
![(4 {u}^(3) ) (d)/(dx) (y(x)) + (d)/(dx) ( {x}^(4) )](https://img.qammunity.org/2022/formulas/mathematics/college/b6br4vxwhkxqopbwdq4kqruwtrsqga0s0s.png)
return to the old variable:
![4(y(x) {)}^(3) (d)/(dx) (y(x)) + (d)/(dx) ( {x}^(4) )](https://img.qammunity.org/2022/formulas/mathematics/college/la3o8lxtk0axtywomouucgnonjz46l7yui.png)
apply the power rule once again:
![4 {y}^(3) (x) (d)/(dx) (y(x)) + (4 {x}^(3) )](https://img.qammunity.org/2022/formulas/mathematics/college/276qgv1gcv7ry14sp1hj64jnci3e2rywts.png)
simplify:
![4 {x}^(3) + 4 {y}^(3) (x) (d)/(dx) (y(x))](https://img.qammunity.org/2022/formulas/mathematics/college/j3yxkuuajq3c5udoirei0uozg0gureabsi.png)
![= 4( {x}^(3) + {y}^(3) (x) (d)/(dx) (y(x)))](https://img.qammunity.org/2022/formulas/mathematics/college/901whq63bx7aajhujizstpwwhjzdsxw5b9.png)
![= (d)/(dx) ( {x}^(4) + {y}^(4) ))](https://img.qammunity.org/2022/formulas/mathematics/college/f2tndjakow1nyprp95fr4rpn6ns3l829an.png)
![= 4( {x}^(3) + {y}^(3) (x) (d)/(dx)(y(x)))](https://img.qammunity.org/2022/formulas/mathematics/college/vc54gvi7r3nkgfbcgrdaooen63iflejzy6.png)
differentiate the equation:
![( (d)/(dx) (16)) = (0)](https://img.qammunity.org/2022/formulas/mathematics/college/i9clybvj2phw3jpbkucy7kmb1mfsuik7yb.png)
![= (d)/(dx) (16) = 0](https://img.qammunity.org/2022/formulas/mathematics/college/dc6vmtzi33pqznco7hm9uz28sv2r5l67o5.png)
derivative:
![4 {x}^(3) + 4 {y}^(3) (dy)/(dx) = 0](https://img.qammunity.org/2022/formulas/mathematics/college/rn27gindgd9vfs03ti54emsqhzo4dkt4t4.png)
![(dy)/(dx) = - \frac{ {x}^(3) }{ {y}^(3) }](https://img.qammunity.org/2022/formulas/mathematics/college/myb0aeba89jsculd436lggzohzbithda7s.png)