159,068 views
23 votes
23 votes
Find a general expression for y given that

a
dy
-
=
9x – 2
3x
dx


I need help with either question 2 or 3 please!

Find a general expression for y given that a dy - = 9x – 2 3x dx I need help with-example-1
User Colin Lazarini
by
3.1k points

2 Answers

3 votes
3 votes

We need to solve two questions first from differential equations and the second one from Integral Calculus, but before starting let's recall the formulae and concepts which will help us a lot in doing the questions:


  • {\boxed{\displaystyle \bf \int x^(n)\:dx=(x^(n+1))/(n+1)+C\:\: , \:\: n\\eq -1}}


  • {\boxed{\displaystyle \bf \int \{f(x)\pm g(x)\pm h(x)\pm \cdots\}dx=\int f(x)\: dx\pm \int g(x)\:dx\pm \int h(x)\:dx\pm \cdots}}


  • {\boxed{\displaystyle \bf \int kf(x)\:dx=k\int f(x)\:dx}}


  • {\boxed{\displaystyle \bf \int dx=x+C}}

Where , C is the Arbitrary Constant and k being any constant

Question 1 :-

Consider the differential equation :-


{:\implies \quad \sf (dy)/(dx)=(9x-2)/(3√(x))}


{:\implies \quad \sf dy=(9x-2)/(3√(x))dx}

Seperate the denominators of the fraction in RHS


{:\implies \quad \sf dy=\bigg((9x)/(3√(x))-(2)/(3√(x))\bigg)dx}


{:\implies \quad \sf dy=\bigg(3√(x)-(2(x)^(\footnotesize -\frac12))/(3)\bigg)dx}

Integrating both sides ;


{:\implies \quad \displaystyle \sf \int dy=\int \bigg(3√(x)-(2(x)^(\footnotesize -\frac12))/(3)\bigg)dx}


{:\implies \quad \displaystyle \sf y=\int 3(x)^(\footnotesize \frac12)\:dx-\int (2(x)^(\footnotesize -\frac12))/(3)\:dx}


{:\implies \quad \displaystyle \sf y=3\int (x)^(\footnotesize \frac12)\:dx-\frac23 \int (x)^(\footnotesize -\frac12)\:dx}


{:\implies \quad \displaystyle \sf y=3*((x)^(\footnotesize \frac32))/(\frac32)-(2)/(3)* ((x)^(\footnotesize \frac12))/(\frac12)+C}


{:\implies \quad \bf \therefore \quad \underline{\underline{y=2x√(x)-(4)/(3)√(x)+C}}}

Question 2 :-

Refer to the attachment for this answer

Find a general expression for y given that a dy - = 9x – 2 3x dx I need help with-example-1
User Tom Offermann
by
3.3k points
5 votes
5 votes

Answer:

See Below.

Explanation:

Problem #2

We want to find the general expression for the differential equation:


\displaystyle (dy)/(dx) = (9x-2)/(3√(x))

Separation of variables:

\displaystyle dy = (9x-2)/(3√(x)) \, dx

Take the indefinite integral of both sides and integrate:

\displaystyle \begin{aligned} \int 1 \, dy & = \int (9x-2)/(3√(x)) \, dx \\ \\ y & = \int (9x)/(3√(x)) - (2)/(3√(x))\,dx \\ \\ & = \int 3 x\cdot x^(-1/2) \, dx +\int -(2)/(3)x^(-1/2)\, dx \\ \\ & = 3\int x^(1/2) \, dx -(2)/(3)\int x^(-1/2) \, dx \\ \\ & = 3\left((2)/(3)x^(3/2)\right)-(2)/(3)\left(2x^(1/2)\right) \\ \\ & = 2x^(3/2) -(4)/(3)√(x) + C\end{aligned}

Hence, the general expression is:

\displaystyle y = 2x^(3/2) -(4)/(3)√(x) + C

Problem #3

We want to evaluate the integral:


\displaystyle \int \left( 5-x^2 + (18)/(x^4)\right) \, dx

Apply the power rule for integrals:

\displaystyle \begin{aligned} \int \left(5-x^2+(18)/(x^4)\right)\, dx & = \int \left(5x^0-x^2+18x^(-4)\right)\, dx \\ \\ & = 5x-(1)/(3)x^3+18\left(-(1)/(3)x^(-3)\right) + C \\ \\ & = 5x-(1)/(3)x^3 -(18)/(3)x^(-3) + C \\ \\ & = 5x-(1)/(3)x^3-(6)/(x^3) + C\end{aligned}

In conclusion:

\displaystyle \begin{aligned} \int \left(5-x^2+(18)/(x^4)\right)\, dx & = 5x-(1)/(3)x^3-(6)/(x^3) + C\end{aligned}

User FrancescoMussi
by
3.2k points