Answer:
∠YDC measures 140°.
Explanation:
We can consider using the Exterior Angle Theorem. According to the theorem, the exterior angle of a triangle is equal to the two opposite interior angles.
In other words:
![\displaystyle m \angle YDC = m\angle DCB + m\angle CBD](https://img.qammunity.org/2022/formulas/mathematics/high-school/kirjgrjh92iqgv5dtat9wa1o5j45mwof6t.png)
Substitute:
![\displaystyle (15x + 5) = (80) + (6x+6)](https://img.qammunity.org/2022/formulas/mathematics/high-school/s8lpk60ufeqt9sh77ses7ez84narfjwtmz.png)
Solve for x. Combine like terms:
![15x + 5 = 6x + 86](https://img.qammunity.org/2022/formulas/mathematics/high-school/55r7ckwdd4789uzq88033ov61y7ad77xw9.png)
Simplify:
![9x = 81](https://img.qammunity.org/2022/formulas/mathematics/high-school/rf6crhxc0ktl9g5etghw2rcju5b8lx4gd2.png)
And divide. Hence, the value of x is:
![x = 9](https://img.qammunity.org/2022/formulas/mathematics/high-school/awfwxs2jslrh7li7rmmsbndgzm045kbj3s.png)
∠YDC is given by:
![\displaystyle m\angle YDC = 15x + 5](https://img.qammunity.org/2022/formulas/mathematics/high-school/bbdol7fz9wh1jsdsvzda53gp3cmevvales.png)
Since we now know the value of x, substitute and evaluate:
![\displaystyle \begin{aligned} m\angle YDC &= 15x + 5 \\ &= 15(9) + 5 \\ &= 135 + 5 \\ &= 140^\circ\end{aligned}](https://img.qammunity.org/2022/formulas/mathematics/high-school/xw712chy60joery6jpr0vt5bjkt20qpzsa.png)
In conclusion, ∠YDC measures 140°.