![3.20×10^7\:\text{m/s}](https://img.qammunity.org/2022/formulas/physics/college/pwnuhihclv94rdwygnsdfl0tedjoai8e0v.png)
Step-by-step explanation:
Let
![L = 28.2\:\text{m}](https://img.qammunity.org/2022/formulas/physics/college/pim4tmqvrg4b3m41pkyjx3vxy5hu02alg5.png)
![L' = 28.2\:\text{m} - 0.161\:\text{m} = 28.039\:\text{m}](https://img.qammunity.org/2022/formulas/physics/college/4mhiikzc98ccs9wox01u7d8empi1dhsubc.png)
The Lorentz length contraction formula is given by
![L' = L\sqrt {1 - \left((v^2)/(c^2)\right)}](https://img.qammunity.org/2022/formulas/physics/college/g17d7itp6qrsezovvbxzb01hltvg9l1q2w.png)
where L is the length measured by the moving observer and L' is the length measured by the stationary Earth-based observer. We can rewrite the above equation as
![\sqrt {1 - \left((v^2)/(c^2)\right)} = (L')/(L)](https://img.qammunity.org/2022/formulas/physics/college/3uo4ibtmxkqo3q80uyir2az3ryxaiirixf.png)
Taking the square of the equation, we get
![1 - \left((v^2)/(c^2)\right) = \left((L')/(L)\right)^2](https://img.qammunity.org/2022/formulas/physics/college/ynvaezv33vagz3ylxe1zxkryipjoluipi5.png)
or
![1 - \left((L')/(L)\right)^2 = \left((v)/(c)\right)^2](https://img.qammunity.org/2022/formulas/physics/college/fnwvy95g2xkte6w379k7bx9h0jrhu8xtn6.png)
Solving for v, we get
![v = c\sqrt{1 - \left((L')/(L)\right)^2}](https://img.qammunity.org/2022/formulas/physics/college/1j7j7cjcm9lzuzqfs1juz8bnur8gvgzdgb.png)
![\:\:\:\:=(3×10^8\:\text{m/s})\sqrt{1 - \left(\frac{28.039\:\text{m}}{28.2\:\text{m}}\right)^2}](https://img.qammunity.org/2022/formulas/physics/college/9z5ac56m5d6vuqe8906asrsj1345tljsm5.png)
![\:\:\:\:=3.20×10^7\:\text{m/s} = 0.107c](https://img.qammunity.org/2022/formulas/physics/college/dviwgzrmeqn6y4z6o39zsfwmfbhwljfx1o.png)