52.9k views
5 votes
Those are not the powers question from transformation of product and sum trigonometry

prove that : cos3A+cos5A+cos7A+cos15A= 4cos4Acos5Acos6A​

1 Answer

2 votes

Answer:

see explanation

Explanation:

Using the sum to product identity

cosx + cosy = 2cos(
(x+y)/(2) )cos(
(x-y)/(2) )

Consider left side

(cos5A +cos3A) + (cos15A + cos7A)

= 2cos(
(5A+3A)/(2) )cos(
(5A-3A)/(2) ) + 2cos(
(15A+7A)/(2)) cos(
(15A-7A)/(2) )

= 2cos(
(8A)/(2)) cos(
(2A)/(2)) + 2cos(
(22A)/(2) )cos(
(8A)/(2) )

= 2cos4AcosA + 2cos11A cos4A ← factor out 2cos4A from both terms

= 2cos4A( cos11A + cosA) ← repeat the process

= 2cos4A( 2cos(
(11A+A)/(2) )cos(
(11A-A)/(2) )

= 2cos4A(2cos(
(12A)/(2))cos(
(10A)/(2) )

= 2cos4A(2cos6A cos5A)

= 4cos4Acos5Acos6A

= right side , thus verified

User Corillian
by
4.2k points