532,790 views
20 votes
20 votes

\rm\begin{gathered}\displaystyle\int \rm \left[ \rm (1)/(x - 1) + ( \displaystyle\rm \sum_(k = 0)^(2018) (k + 1)x^k)/(\displaystyle \rm\sum_(k = 0)^(2019)x^k) \right]dx \\\end{gathered}

User Fidd
by
2.7k points

1 Answer

27 votes
27 votes

Let
S_n = \sum\limits_(k=0)^n x^k. Then


S_n = 1 + x + x^2 + \cdots + x^n


xS_n = x + x^2 + x^3 + \cdots + x^(n+1)


\implies (1 - x) S_n = 1 - x^(n+1)


\implies S_n = (1 - x^(n+1))/(1 - x)


\implies \displaystyle \sum_(k=0)^(2019) x^k = S_(2019) = (1 - x^(2020))/(1 - x)

Let
S_n' = \sum\limits_(k=1)^n k x^k. (Starting the sum at k = 0 doesn't change its value.) Then


\displaystyle S_n' = \sum_(k=1)^n k x^k


\displaystyle S_n' = x \sum_(k=1)^n k x^(k-1)


\displaystyle S_n' = x \sum_(k=0)^(n-1) (k+1) x^k


\displaystyle S_n' = x \left(\sum_(k=0)^(n-1) kx^k + \sum_(k=0)^(n-1) x^k\right)


\displaystyle S_n' = x (S_(n-1)' + S_(n-1))


\displaystyle S_n' = x (S_n' - nx^n) + xS_(n-1)


\implies S_n' = (x - (n+1)x^(n+1) + nx^(n+2))/((1-x)^2)


\implies \displaystyle \sum_(k=1)^(2018) kx^k = S_(2018)' = (x - 2019x^(2019) + 2018x^(2020))/((1-x)^2)

So, the integrand reduces considerably to


\frac1{x-1} + (S_(2018)' + S_(2018))/(S_(2019)) = (2020 x^(2019))/(x^(2020)-1)

and its integral is trivial; by substitution,


\displaystyle \int (2020x^(2019))/(x^(2020)-1) \, dx = \int (d(x^(2020)-1))/(x^(2020)-1) = \boxedx^(2020)-1\right

User Gary Chambers
by
2.7k points