77.5k views
1 vote
The vector (a) is a multiple of the vector (2i +3j) and (b) is a multiple of (2i+5j) The sum (a+b) is a multiple of the vector (8i +15j). Given that /a+b/= 34 and the scaler multiple of (8i+15j) is positive, Find the magnitude of a and b.​

User Danny C
by
4.2k points

1 Answer

2 votes

Answer:


\|a\| = 5√(13).


\|b\| = 3√(29).

Explanation:

Let
m,
n, and
k be scalars such that:


\displaystyle a = m\, (2\, \vec{i} + 3\, \vec{j}) = m\, \begin{bmatrix}2 \\ 3\end{bmatrix}.


\displaystyle b = n\, (2\, \vec{i} + 5\, \vec{j}) = n\, \begin{bmatrix}2 \\ 5\end{bmatrix}.


\displaystyle (a + b) = k\, (8\, \vec{i} + 15\, \vec{j}) = k\, \begin{bmatrix}8 \\ 15\end{bmatrix}.

The question states that
\| a + b \| = 34. In other words:


k\, \sqrt{8^(2) + 15^(2)} = 34.


k^(2) \, (8^(2) + 15^(2)) = 34^(2).


289\, k^(2) = 34^(2).

Make use of the fact that
289 = 17^(2) whereas
34 = 2 * 17.


\begin{aligned}17^(2)\, k^(2) &= 34^(2)\\ &= (2 * 17)^(2) \\ &= 2^(2) * 17^(2) \end{aligned}.


k^(2) = 2^(2).

The question also states that the scalar multiple here is positive. Hence,
k = 2.

Therefore:


\begin{aligned} (a + b) &= k\, (8\, \vec{i} + 15\, \vec{j}) \\ &= 2\, (8\, \vec{i} + 15\, \vec{j}) \\ &= 16\, \vec{i} + 30\, \vec{j}\\ &= \begin{bmatrix}16 \\ 30 \end{bmatrix}\end{aligned}.


(a + b) could also be expressed in terms of
m and
n:


\begin{aligned} a + b &= m\, (2\, \vec{i} + 3\, \vec{j}) + n\, (2\, \vec{i} + 5\, \vec{j}) \\ &= (2\, m + 2\, n) \, \vec{i} + (3\, m + 5\, n) \, \vec{j} \end{aligned}.


\begin{aligned} a + b &= m\, \begin{bmatrix}2\\ 3 \end{bmatrix} + n\, \begin{bmatrix} 2\\ 5 \end{bmatrix} \\ &= \begin{bmatrix}2\, m + 2\, n \\ 3\, m + 5\, n\end{bmatrix}\end{aligned}.

Equate the two expressions and solve for
m and
n:


\begin{cases}2\, m + 2\, n = 16 \\ 3\, m + 5\, n = 30\end{cases}.


\begin{cases}m = 5 \\ n = 3\end{cases}.

Hence:


\begin{aligned} \| a \| &= \| m\, (2\, \vec{i} + 3\, \vec{j})\| \\ &= m\, \| (2\, \vec{i} + 3\, \vec{j}) \| \\ &= 5\, \sqrt{2^(2) + 3^(2)} = 5 √(13)\end{aligned}.


\begin{aligned} \| b \| &= \| n\, (2\, \vec{i} + 5\, \vec{j})\| \\ &= n\, \| (2\, \vec{i} + 5\, \vec{j}) \| \\ &= 3\, \sqrt{2^(2) + 5^(2)} = 3 √(29)\end{aligned}.

User Iazel
by
3.8k points