Answer:
![\displaystyle x \approx 30.8](https://img.qammunity.org/2022/formulas/mathematics/college/nvrwv3eto3a60vn6tbfu6w683q27cdipi9.png)
Explanation:
Note that the figure is a right triangle, and that we are given the length of the side adjacent to x and the hypotenuse of the triangle.
Therefore, we can use the cosine ratio. Recall that:
![\displaystyle \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/kdphbbr48zvjdu1z24zwtznmkofa7ae22d.png)
The adjacent side is 8.5 and the hypotenuse is 9.9. Therefore:
![\displaystyle \cos x = (8.5)/(9.9)](https://img.qammunity.org/2022/formulas/mathematics/college/zdkxcizljf8h2kbs04ef07vnwo3hol9ho7.png)
We can take the inverse cosine of both sides:
![\displaystyle x = \cos^(-1) (8.5)/(9.9)](https://img.qammunity.org/2022/formulas/mathematics/college/tro8uh6mgsptgifazkuzm3q6xsuhv895x8.png)
Use a calculator. Hence:
![\displaystyle x \approx 30.8](https://img.qammunity.org/2022/formulas/mathematics/college/nvrwv3eto3a60vn6tbfu6w683q27cdipi9.png)